0=6x^2+24x+17

Simple and best practice solution for 0=6x^2+24x+17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=6x^2+24x+17 equation:


Simplifying
0 = 6x2 + 24x + 17

Reorder the terms:
0 = 17 + 24x + 6x2

Solving
0 = 17 + 24x + 6x2

Solving for variable 'x'.

Combine like terms: 0 + -17 = -17
-17 + -24x + -6x2 = 17 + 24x + 6x2 + -17 + -24x + -6x2

Reorder the terms:
-17 + -24x + -6x2 = 17 + -17 + 24x + -24x + 6x2 + -6x2

Combine like terms: 17 + -17 = 0
-17 + -24x + -6x2 = 0 + 24x + -24x + 6x2 + -6x2
-17 + -24x + -6x2 = 24x + -24x + 6x2 + -6x2

Combine like terms: 24x + -24x = 0
-17 + -24x + -6x2 = 0 + 6x2 + -6x2
-17 + -24x + -6x2 = 6x2 + -6x2

Combine like terms: 6x2 + -6x2 = 0
-17 + -24x + -6x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(17 + 24x + 6x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(17 + 24x + 6x2)' equal to zero and attempt to solve: Simplifying 17 + 24x + 6x2 = 0 Solving 17 + 24x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 2.833333333 + 4x + x2 = 0 Move the constant term to the right: Add '-2.833333333' to each side of the equation. 2.833333333 + 4x + -2.833333333 + x2 = 0 + -2.833333333 Reorder the terms: 2.833333333 + -2.833333333 + 4x + x2 = 0 + -2.833333333 Combine like terms: 2.833333333 + -2.833333333 = 0.000000000 0.000000000 + 4x + x2 = 0 + -2.833333333 4x + x2 = 0 + -2.833333333 Combine like terms: 0 + -2.833333333 = -2.833333333 4x + x2 = -2.833333333 The x term is 4x. Take half its coefficient (2). Square it (4) and add it to both sides. Add '4' to each side of the equation. 4x + 4 + x2 = -2.833333333 + 4 Reorder the terms: 4 + 4x + x2 = -2.833333333 + 4 Combine like terms: -2.833333333 + 4 = 1.166666667 4 + 4x + x2 = 1.166666667 Factor a perfect square on the left side: (x + 2)(x + 2) = 1.166666667 Calculate the square root of the right side: 1.08012345 Break this problem into two subproblems by setting (x + 2) equal to 1.08012345 and -1.08012345.

Subproblem 1

x + 2 = 1.08012345 Simplifying x + 2 = 1.08012345 Reorder the terms: 2 + x = 1.08012345 Solving 2 + x = 1.08012345 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = 1.08012345 + -2 Combine like terms: 2 + -2 = 0 0 + x = 1.08012345 + -2 x = 1.08012345 + -2 Combine like terms: 1.08012345 + -2 = -0.91987655 x = -0.91987655 Simplifying x = -0.91987655

Subproblem 2

x + 2 = -1.08012345 Simplifying x + 2 = -1.08012345 Reorder the terms: 2 + x = -1.08012345 Solving 2 + x = -1.08012345 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = -1.08012345 + -2 Combine like terms: 2 + -2 = 0 0 + x = -1.08012345 + -2 x = -1.08012345 + -2 Combine like terms: -1.08012345 + -2 = -3.08012345 x = -3.08012345 Simplifying x = -3.08012345

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.91987655, -3.08012345}

Solution

x = {-0.91987655, -3.08012345}

See similar equations:

| y^2+2y+3=0 | | y=6x^2+24x+17 | | (2b+4)(2b-4)= | | 0.08(300)+0.13x=63.00 | | -8(t-4)-(t+4)=6 | | x+1.6=8.62 | | 25x^2-150x-25y^2+100y=500 | | .03*2007-58.41= | | n=.03*2004-58.41 | | 0.24y-0.4=0.14y+2-0.5y | | n=.03*2005-58.41 | | -3x^2-15x-15x-75=0 | | 4w^3+5w^2-28w-35=0 | | (7w+14)(w^2-10w+24)=w | | 5z-26=-32+3z | | x-0.8=8.76 | | 180000=.03x-58.41 | | (7w+14)(w^2-10w+24)=0 | | -36t=72 | | 9x^21= | | [(2y)(2y)]-23y+67=[(y-7)(y-7)] | | w^2-8w+7=0 | | 7x(12x+3)+7=6X(2X-3)-5 | | (2y*2y)-23y+67=(y-7)(y-7) | | -x^2-20.5x-61.5=0 | | 0.5(5-2k)=6(k+4) | | 3(x+10)=180 | | n=0.03x-58.41 | | 9(5y-9)= | | -x=8x-5 | | 0.5(5-3k)=6(k+4) | | x+6=8x-5 |

Equations solver categories